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Abstract

This paper examines the exlraction of geom elric
primitives from two- and thy ce- dimens ional tmage
data 1 'he geomelric primilives are represended by
paranctric manifolds in the fmage spoace, such as cir-
cles, plancs, and cylinders. AlL explicit error model al-
lows the pranitives Lo be exlracted robustly. The prim-
itives are located by caploving the parameler space,
wh jelyis stru clured as a hicrarchy ot cells. This resulls
in a scarch strategy tha i is robust Lo disly ac ors, miss-
ing dala, and noise and that docs n ol vequire on initiol
cslinale of the positions of the geomelric Prin jljves.
We cxamin e, in partic ular, the use of these lechuiques
to d cleel eralers on planctory bodies by catracling cir-
cles in two- dimn ensional eage dalean o to find unca -
ploded ordnance in test ranges by loco ling cylinders
in three- dimensiona range da ta and real cxamples are

S/1(> 111/1.

1  Introduction

I'he extraction of geometric primitives from iinage
(lilt a is @ uscful tool in many applications. T'wo exam-
ples that. will be examined in this work are detecting,
craters on planctary hodies by extracting cireles fi om
cdpcdata, andlocating unexplodedordnance till’oup,ll
the extraction of eylinders from sterco range data.

Sceveral methiods have beennuse Lo extract geometrice
primitives from image data. ‘The most popular 1) (tl1-
0(Ls arc variations 011 the 1 loughtransforin(sce [9, 1 0]
for reviews of such techmiques). These methiods map
the tmage features into the space of possible primi-
tive paramcters and then scarch for peaks in this pa-
rameoter space, since these peaks correspond to likely
geometric primitives,

Other aphroachies include the use of robust statis
tics to fit the image data inthe P resence of noise and
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outliors [7, 13], methods thathypothesize inilllit,iv(:
posit ions using small sets of data features and then
test Cach position that is hypothesized [3, 14], inini-
mization of a cost function through iter ative optimiza-
tion [1 5], andregion growing, [2].

A key drawback tomany of thesenethods is that it
is diflicult to hoth propagate the eflfects of localize tion
error in the data features and ha ndle large amounts
of distracting data (a particular primitive may consist
of a small fraction of the total data). The met hods
of Cheny [7] and Besl and Jain [2] candeal with these
problemns, but botl methods require an initial estimate
of the primitive position and then iteratively refine the
fit.

In this work, we take an approach that dc sals
with the effects of localization ervor explicitly through
the Us(C of abounded erre 11 model, can handle large
amaout s of distracting data, and does not require an
initial estimate of the primitive position s, Our ap-
proach s inspired by rescarclt on ohject recognition ill
which the parameter space is recursively divided and
p runcd [4, 8. We retain the splitting and pruning
scarcli strategy, but rat hey t han using discrete points
as our model, we use a parameterized manifold to rep-
resent the geometrie primitives. Similar ideas are also
used in the Tast Hough Transform [1 1], although this
method does not pr opagate localization error.

W e note that it is possible to use object recogni-
tion tedmiques directly in the extraction of geometric
primitives, by constructing a canonical primitive cor -
posed of a set of discrete points, but there are sev-
eral disadvantages to this appr oach - First, if we do
not know the scale of the primitive, the sampling, of
points (11 the primitive willeitherbe too” coarse, and
thus a POOY represent at ion, or too” finie, and very time
consuming. Sccond, some primitives, such as cylin-
ders, hiave potentially 11111 )(11111 1@ extent. If we place
arartificialbound 011 theextent of such primit ives,
itcanlead to 1)170D1C111S Inthe extraction, and itadds
another degy ee of freedomuponwe oust sear ¢h, Such




as translations along the axis of a cylinder.

T this work, geometric primitives are ext racted
from the image data by scarching for parameters cor-
responding to primit ives that satisfy awaceeptance
eriterion based on how many of the data features are
fit by the primitive up to a bounded crror. In order
to perform this scavcli, we consider rectilinear cclls of
the parameter gpace. For cach such cell that is exar n-
ined, we determine whetl ier the cell could contain the
paramcters for a primitive that meets the aceept ance
criterion, If not, then the cell is pruned, otherwise the
cell is split into t wo subecllsand the subeells are exam-
ined recursively. When a very small cell is reachied, we
test the primitive at the center of the cell to determine
if it meets the acceptance eriterion,

Several techniques are used to improve the speed of
the scarch. A hicrarchy of theimage features is cor -
st ructed that allows the pruning of multiple features
atl a time, so that not every data feature must be con-
sidered explicitly for cach cell of the transformation
space. Robust random sampling techmiques also used
to improve thespeed or the scarch.

T1ie balanice of this Paper explores these ideas in
detail. Section 2 discusses the micthod by which geo-
mcetric primitives are represented. Section 3 desceribes
the basic method for scarching the paramcter space.
The optimizations that are used to speed up the search
are discussed in Section 4. Scection b gives examnples of
the results that have been achieved with real images.
Finally, Section 6 suimmarizes the contributions of this
pap e

2  Paramcterization of primitives

A class of primitives canbe represented as paramect -
ric manifolds deseribed by t he equation f(X;17): (),
where X is a vector of the data feature paramcters
and 1 is avector of the inirllit,iv(! paramcters. We
will primarily consider two cases in this paper, the
extraction of circles from two-dimensional edge dat a
and the extraction of eylinders from three- dimensional
range data.

2.1 Circles

Inthe (/1s(! where we Want, to e xtract civeles from a
two-dimensional edge image, our data features have
two parameters, the @ and y position of the edge point,
so in this case, X =[x y]'. Circles have three degrees
of freedom, paramieterized by, for ¢ Xample, the coor -
dinates of the cen ter, (¢, y.), and the radius, 7, sowe

Figure 1: Paramcterization of a eylinder.

have 1 : e ye 715 Our parameterizing cquation is:
(a1 y - y)? -1 0

If we have informmation on the local orientation of
the pixels (for example the normal to the edge chain),
we can use X = [a y 0] and add the following con-
straint:

Y- Yo
tanf) - ¥- Y
Tr- Te

2.2 Cylinders

When extracting eylinders from range data, our data
features lrave thiree parametars, X =[x y 2]t Cylin-
ders have five degrees of fircedom.  We can paramnc-
terize eylindors by: A, a unit vector in the direction
of the axis (two degrees of freedom), 12, the point on
this axis closest to the origin (two degrees of freedom),
and ¢, the radius of the eylinder. See Figure 1. The
paramcterizing cquation is:

N- PP (X - P-4 s 0

with the constraints:

1Al = 1
AP0

In practice, we would rather use five simple vari-
ables to paramecterize the eylinder, since this parvame-
ter space is casier use. We use the polar angle, (f), and
azinmth, (), of the axis divectionsuch tlist,:



o (as (s
A= sin¢rcos @
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We use three cases to parameterize the axis point
closest t o the origin, depending on which coordinate
axis is closest to the ¢ylinder axis divection. The two
coordinates that do not coincide with this coordi nate
axis arc used to parameterize the point. Withiout loss
of generality, let us assumie that A, > Ay and A, >
Ay Inthis case, we parameterize I by I and I,
such that:

,
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3 Secarching the parameter space

We now discuss the scarch strategy by which prim-
itives are located in the data. We must first specify
some acceptance criterion for the primitives. One pos-
sible eriterion is the number of data features that lie
withinsorne allowable error, ¢, of the primitive. When
primitives of arbitrary scale ave considered, it is often
uscful in practice to normalize this counit by the scale
of the primitive (c.g. by dividing by the radius for
the cases discussed above), SO that there is no hias
towards large primitives. We report cither the best
primitive according to the eriterion or all primitives
that surpasssome till’(1slold, /.

To find the primitives that satisfly the aceeptance
criterion, we consider rectilinear cells in the parameter
space. [t is thus imperative that bounds can be placed
on parameters of the primitives that we seck, or that)
they are naturally b ounded. This is casy to achieve if
anappropriale parameterization is (*110 s(11 andsome
simplifying assumptions arc made (such as requiring
that the center of the cirde lie inside the fmage, or
that the eylinder axis pass through the range data).

At the beginning of our scarch, the parameter space
can citlier be considered as one large cdl, orit canbe
divided into several smaller cells that, are examined
individually. (‘'Fhis division is necessary for eylinders,
since we do not wantany cells to cover more than
one case in the paran neteriza tion.) Fach point in the
paramctoer space represents a possible position of a 8¢
ometric primitive inthe (lab. The parameter space
cells are volumes of the paramcter space and thus rep
resent a continuous space of possible geometrice pring-
itive locations.

Lach cell that is examined is tested to determine
i f it can contain the parameters of a primitive that

satisfics the acceptance eriterion. AT | cflicient testing
mechanism IS used that is conser vative in that it never
rules out a cell that contains a £00d primitive, but it
ca n fail 1o rule out a cell that does not contain any
good primitive. This will not result in false positives
since the cells are vecursively examined at finer resolu-
tions until we reach very small cells, which are tested
by considering a particular primitive within the cell.

In order to test the cells efliciently, we first com-
pute a bound on the ¢t ange in the distance of any
image feature from the primitive that can be caused
by moving the primitive from the location specificd
by the center of the cell to any other position in the
cell. We will denote this bound de: for cell €. We
then determine the distance, dy, of cach inage fea-
tove, f, 11 0111 t he primitive represent ed by the point
at.the cC1otCr of the celland count how many of the
features havea distance that is less than the allow able
e1vor, ¢, plus the bound on the difference in distances
described above (dy < de -1 ¢). Thecell (“all bepruned
if this count is below the threshold set by the accep-
t ance crit erion. When the cell canmot be pruned, it
i s divided into two subceells by slicing it at the inid-
point of one of the parameters and the subeells are
considered recursively using, a dept h-first scarch.

To prevent this method from dividing the cells until
they are arbitravily small, W (! scet a threshold on de -
Whendefalls below thet b (%1101(1, wetestthe cellby
considering the quality of primitive at the center of the
cell t osce if it meets the acceptance criterion,  This
is cquivalent to hinposing some underlying diseretiza-
tion 011 the paramceter space, as is done in [6, 8], and
considering only those positions in the underlying dis-
eretization. 1t is possible that this could cause a prim-
itive that meets the acceptance eriterion 1o be inissed,
but since the cells are very sinall when they ave tested
in this manmer, it is unlikely that a significant error
will bemade.

Note that any hinage feature for which it is deter-
mined that the feature cannot belong to any primitive
in a paramncter space cell that cannot be pruned (i.e. it
docs not contribute to the count as desceribed above),
need not be considered in the recursive examination of
thie subcells, since primitives represented by the sub-
cells are a subsct of those 1 epresented by the original
cell

3.1 Computing d¢

The computation of d¢; varies depending, on the class
of primitives that we are trying to locate. For example,
when we wishi to detect civeles, we use f(X, 19) = (& -
a4 (y-ye) ?- 2. Given two civeles, Uy = [@ 1,1, 7]




\ W o . .
and I's = (29, y2, 72)'s the difference in the distance of
any point from these two circles canbe b ound od hy:

d < V(o1 - 22)? -1 (g g2)? 1 ey - 12
Naote that this does not depend on the circles them-

selves, only the diflerence between the parameters,
d: 1’y - 1, so we can rewrite this:

< \ﬂsz 162116,
Now, for any cell in the parameter space,
C: Ay, e <a <@y <y <y <o <y

we can use this relations! iip to place the following,

H01111(1 onde:

/71.7 V 7:1. 72
Ly Ay

de: < e
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Yor eylinders, de; is more diflicult to compute, since
changes in the orientation of the eylinder axis ca n
change the distance of a point from the eylinder by
anarbitrary amount if the point is far enough from
the center of rotation. We use:

(7»,, i 7':) <07[10£ >1 (m - )2
e R TTY A Eha IR (e M
2 2 2

where (v, 1), (0, 07), (¢4, ¢0) , andtwoof (71, @),
(v, yr ), and (21, 21, ) ave given by t hie boundaries of’
the cell. Assume, for example, that A, > A, and
Ay, > Ay, and thus z andy arve used to parameterize
the point on the axis. We b’(mn(] an -l by examining
thie solutions to 12, = o2
corners of the cell, Inth is (\,(fuati(m, dy» i a bound on
the distance from 1 (the cylinder axis point closest to
the origin) to the iinage feature that we are coniparing,
apainst. A single dp can beused for all of the hmage
features, or we can cornpute dp for cach image featurve
to achieve a tighter b ound. Note that 8 and ¢ are
measured in radians,

w1 gy the appropriate

3.2 Sclecting a parameter to subdivide

We must decide, wh en a cell cannmot be pruned, which
parameter should be sliced to subdivide the cell. We
should subdivide the parameter which contributes the
lar pest amount to de;. However, the paramcters do

not con tribu te amounts to de; independcently. We ap-
ply heurvistics tO estimate which of the parameters is
contributing the greatest amount, and slice that pa-
rameter. For example, we prefer to split the radius
before the position of the center of a circle if:

2 2

ry -y Y- W : Ty - 1

L . it 9 Rl
JE) e () e (257)

4  Optimizations

There are two primary methods by which we imn-
prove the speed of the parameter space scarch. The
first is to consider a hicravelyy of the image features
that allows many of the features to be pruned quickly
for a particular parameter space cell and the second
is the use of random sampling to reduce the overall
amount. (If the datathat is processed by the full algo
rithm.

4.1 Image {eature hierarchy

1t is possible to rule out a cell of image features for a
particular parmncter space cell by examining, a single
image location using; a method similar to the once by
which cells in the parameter space are p runed after
examining only a single position in the ccll. Co nsider
a cell, D, in the mage feature space. et ¢ be the
center of this coll, dyy be the distance from ¢g, to the
furthest iimage feature in the celly and d,,, be the dis-
tance from ¢y to the primitive represente d by the cen-
ter of a parameter space cell, C. Dofi ne de; as above,
except that this b ounid now mu st apply to the image
features v DU d.,, > dypy -1 de + ¢, then no image
feature in the hmage cell can mateh any primitive in
the parar neter space cellup to the error, ¢, and we can
thus prunc the image cellfor this paramcter space cell
and any of its subeells that are examined.

To takeadvantage of this idea, we build a licrarchy
of Brage feature colls. See Figure 2. This is a binary
tree, where cach node corvesponds to a cdl in the -
ape feature space. The root of the tree is a cell just
large enoughito contain all of the iimage features. Kach
cell that contains more than one image feature has two
childven that are roughly half its size. Note though,
that the union of the subeells need not be equivalent,
to the parent cell, since we need only ensure that the
subce lls cover @l of the image features in the original
cell. Facliindividual feature is a leaf of the tree. We
build this tree recursively by subdividing the cells at
the midpoint of the longest axial direction. Kach sub-
cell is then contr actedsuchi that it is just large cnough
to contain all of the data features within it.
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Figure 2: The iinage features are recursively subdivided to
form ahierarchy simnilar to the paramceter space ((,11S.

Now, when a particular parameter space cell is ex-
amined, we scarely this tree of cells inthe image space,
rather than considering cacli feature indivi dually. This
is performed inasimilar manner to the scarch over the
parameter SPace cells, Yor cach hnage space cell that
is examined, we determine if it can be p runed. If the
cell cannot be pruned, then we examine its subcells,
unlessitisa leaf, in which case w(! increment the count
on the number of features that cannot be pruned.

4 .2 Random sampling

In many cases, there is more data than necessary to
extract a geometric primitive. For examiple, acylin -
der that covers only a 25x1 ()[) patthina range iinage
vields 2500 points on the eylincler, which is far more
than we need to extract the eylinder. We can use
randor n ssnpling techniques to redu ce the amount  of
data that is examined, while only slightly decrea sing,
the accuracy of the techniques. To accomplish this,
we samnple some set. of the hinage features at random |
which are processed as deseribed above, If wefind a
cylinder that matches e nough of the data features then

we test the eylinder using all of the data features.

We assume that only geometric primitives consist-
ing of a lcastsorne fraction, «, of t heimage feat ares
are salient and must be locat ed. 1f we sample ¢ fea-
tures and test the full eylinder if s of t hesampledfea-
tures belong to a primitive then the probability that
aprimitive IS missed doe to sampling, is:

[vs]- 1

>‘, (i-)”k(] )t b <o b I)sa /2
h

koo

The above bound is a direct result of Proposition
24(a)in [1], which follows from Chernofl’s bound.
This provides us with a micans of determining, what
value should be usecd for «y given a maximuin error
rate . lu practice, w ¢ compute the v that sat isfics
this error rate num erically, since atight bound is desir-
able, For example, a206x256 ran ge hnage containing
acylinder comprised of 2500 pixels hasa = ().0381, If
1 ODO points are savapled and aprobability of failure
nomorethan ().01 is dosived, then 4 < ().(026() canbe
usced to achieve this,

5 Results

We have applied these techniques to {wo problems,
First, we have examined the extraction of craters og
planctary bodies through the detection of cireles in
two dimcnsional edge data and, sceor 1d, we have ex-
amined finding surface -lying ordnanice by ext rac ting
eylinders from three- dimensional range data,

5.1 1detectionofcraters

It is desirable to be able to detect craters onplanctary
bodies in several applications. Some examples include
mapping of planctary bodics, geological studies, and
optical navigation of spacceraft. One approach to ac-
complishing, this is to parform edge detection on an
image of the sur face of a planctary body and detect
the civeles that ave p rescnt in the edge image. Note
that this assumes thatthe optical axis is close to per-
pendicular to the eraters, so that, the craters appear
as circles rather than (Ultpses. When this is not the
case, similar techimiques can be used to extract ellipses
from edge data,

In this application it is uscful to incorporate knowl-
cdge about the lighting direction in the extraction
pocess, sitice t he gradient orientations at the edges
of craters will haveroughly the same orientation as
the light ing divection (positive dot-produ ct), w hile
shadow cdges will have the opposi te ovientation (nega -
tive dot-product). We can thus sereen out the sha dow



Figure 3: Finding craters by locating circles in €d8¢ images. (8) Animage of the surface of Phobos (the larger of the two
moonsof Mars). (b) The edges detected in theimage. (¢) The craters detected overlaid 011 the originalivnage.

edges throughi the usc of this information. Even if the
lighting, dircction is not known explicitly, its direction
with respect {o the image plane can be e stimated by
examining a weighted average of the gradient direc-
tions in the image.

Figure 3 shows an application of these techniques
to detecting eraters on the surface of 1’hobos (a 1110011
of Mars). lidges wore detected in an inage from
Viking Orbiter using a Canny-like €dge detector [9].
We searched for the civeles t]] at had -{ > 1, whore f' is
thenmnber of image pixels that matched the circle up
toa maximum cerror of 1.5 pixels and » is the radius of
the circle. We did not usc the randow sampling, tech-
niques for this case, since the volu me of the data was
not. large. Fight circles were found that met the ac-
ceptance eriterion. The extraction techimiques required
approximately 4 scconds o11 a SPARCstation ™20 for
this case.

A's canbescen, these techimiques yield good poer-
formance in detecting relatively recent eraters that
have significant ©dge structure. Older craters miay he
problematic for the current techmigues whien the edge
structure has deteriorated . We may be able to per-
forrnrecognitionin this case by treating the grey - level
data as a three- dimensional surface and detecti ng the
craters based on the shading information, if the angle
of incidence of thelighting isknown. This tecimique is
sitnilar to a template matching approach, but it would
handle model error better and yield potentially faster

performance.

5.2 ¥inding surface-lying ordniance

A sccond application that we have examined is lacat-
ing unexploded, surface-lying ordriance using passive
sterco imagery for thie purpose of semi-antonomous
remediation. We use a binocular sterco systens de-
signed for planctary rovers [12] to genera te range im-
ages of outdoorscenes. Cylinders are extracted from
the Tange data to hielp determine if there is an unex-
ploded bomb present iu the iimage. 111 this case, we
assu me that the radius of the bomb and the orienta-
tion of the ground plane are known, so that the scarch
space is rest ricted to three dogrees of freedon . We
also use the known geometry of eylinders to  prevent
portions of the eylinder that shouldbe self-()(clu(i(’ (1
from matching points in the image.

Figure 4 shows an exammple Iimage containing a
bomb where we have applied the ceylinder detection
techmiques. hi this case, we sampled 5% of ther ange
data and used numerical techmiques to determine an
appropriate tillCsliol(l for 1esting t0 theentivedataset.
Apprroximately 7 scconds were required to searcel the
paramecter space (i1 a SPARCstation” 20, A cylinder
was detected at the location of the bomb. No other
cylinders were detected.
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Iiguye 4: The use of ceylinder detection to find unexploded ordnance,

(a) The left iimage of a sterco pair containing

surflace-lying ordnance. (b) The height of cach pixel is deternined using binocular stereo. *1'11(, blackpixclsarclocations

wliere ng range information was F,(iiCraid.

(¢) A cylindernmecting the accept ance criterion yw,s found at the location of

the boinb. This immage shows the axis and boundaries of the eylinder (d) Plot of the range points commpu ted in the haage.

(¢) Plot of the eylinder points detected in the fmage.

6 Summary

This paper has explored the detection of geometric
primitives in image data. We have adopted a scarch
strategy tat has been used recently in object recog-
nition [4, 8], whiere the paramcet er space is recursively
divided and prunicd. Whereas this st rategy was pre-
viously applicd to detecting diserete sets of points in
imagge data, hiere we have applied it to locating primi-
tives that are represented by paramceterized manifolds
in the image data., This allows geometrie primitives to
be robustly ar 1d efficiently extracted from noisy data
with large amounts of distracting data, without re-
quiring an initial estimate of the primitive locations,
where no previous algorithn combined these quali-
ties. Forther improvements are gained through the
use of a hicrarchical representation of the image fea
tures that allows them to be efficiently processed and

the use o random sampling to reduce the vol ume of
data that must be processed. These techniques have
been applied to the detection of eraters ou planctary
bodies by extracting circles from two- dimensional edge
data andlocating surface-lying ordiiance by extracting
eylindersfrom till. (- dlilti(~llsio 11zl rangedata.
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